
   

 

 

 

 
 
Abstract: 
        There are many challenges present in the 
field of robotic manipulation. When 
manipulating an object using a gripper, there is 
more to consider than simply finding the 
location of the object and moving the robotic 
arm towards that point. We have developed a 
descriptive feature based machine learning 
platform that views a 3D point cloud and 
classifies it as one of three different object 
types: Mugs, Plates/Bowls and Glasses/Bottles. 
In this project, we use a database of classified 
3D mesh objects as a Support Vector Machine 
(SVM) training set for new objects to be 
classified. Based on this classification we then 
apply different gripping strategies that best 
suit the type of object to be manipulated. This 
point and vector then serves as a reference 
command for a real or simulated manipulation 
platform. 

 
I.  PROJECT OVERVIEW 

 
        Our motivation for this work stems from 
discussion about ways to manipulate different 
kind of objects. When we consider an object with 
a handle, such as a mug or coffee cup, we can 
pick it up in several ways. The mug can be picked 
up by its center of gravity, by grasping its upper 
rim or by grasping the handle. Intuitively, because 
the object has a handle, we can conclude that the 
handle would probably be the best gripping 
strategy for a mug-type object. For something like 
a plate or bowl, however, there is no handle 
present to repeat this same strategy. In this case, 
grabbing the edge of the plate would be the best 
procedure. Similarly, for an object resembling a 
bottle, we can picture our optimal gripping 
strategy as grasping the middle of the object by its 
minor axis. While we can instruct a computer to 
follow these rules, we must first figure out what 
type of object a set of 3D points really represents. 
 

 
 

 
Fig. 1: Computed Gripping Point for a Mug. 

 
        In order to classify objects in one of the three 
predetermined categories we must develop a set of 
features that can best explain the qualitative 
differences between objects. We use ratios 
between dimensions in X, Y and Z directions to 
roughly determine the general shape of an object. 
To find handles, as in the case of a mug, we use 
an iterative circle-fitting algorithm which gives us 
a notion of symmetry between opposing sides of 
an object. We also look at the boundaries of 2D 
projections of the point clouds to find the relative 
sizes of objects’ opposing ends. 
       With these features, we generate a vector that 
describes any given 3D object. Using machine 
learning techniques, namely Support Vector 
Machines, we can then classify models based on 
their feature vectors. For every object class we 
define, we have a separate SVM that classifies an 
object as positive or negative – positive meaning 
that the object is a candidate for that particular 
class. We then evaluate which class our object 
most closely matches. Based on this label, we then 
compute the gripping point and gripper approach 
vector specific to objects of that class. 
        We have written a C++ class that can 
interface with Robot Operating System (ROS), 
namely with the Willow Garage PR2 Robotic 
simulator. This class employs a GNU Octave-
based package that we wrote on top of existing 
MATLAB packages to read and manipulate 3D 
mesh objects. All the SVM building, pre-
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processing, and image displaying is done directly 
in MATLAB. The ROS-compatible section of our 
project takes in a 3D matrix of points or model 
filename (in .ply format) and classifies an object 
based on three SVM models. The final output is a 
gripping point and vector for the gripper to 
approach the object. 
 

II. APPROACH 
 
A.  Features 
        We iterated through several possible 
numerical features that we could use to pinpoint a 
3D model to a specific class. Our final result used 
the feature list as shown in Table 1. These features 
constitute a 14-dimensional vector that 
characterizes a particular object and is then used 
for SVM training and classification. We have 
assigned equal weight to these features by 
constraining each of them to take a value between 
0 and 1. 
 

Feature Description 

1 Minor Axis Length/Major Axis Length 

2 Middle Axis Length/Major Axis Length 

3 Minor Axis Length/Middle Axis Length 

4-9 
Ratio of number of points on lower 

and upper ends of X, Y and Z axes. 

10-11 Circle fit to 2D projected ends. 

12-13 Rectangle fit to 2D projected ends. 

14 Handle detection feature. 
Table 1: Current Classification Attribute List. 

 
        The first 3 attributes simply give us the 
general “envelope” shape of the object. For the 
object classes that we are considering, and 
extending to even further possible work, it is 
important to know how “long and thin” or “short 
and wide” an object can be described as. In the 
case of a bottle of perfectly circular cross-section, 
for example, we will find that the first 2 features 
will be small and close to equal, and feature 3 will 
be close to 1 because the middle and minor axes 
lengths describe the circular cross-section. For a 
spherical object, on the other hand, we expect that 
all 3 features will take a value close to 1. 

        Features 4-9 can quantitatively describe the 
degree of “taper” of a 3D object. This is done by 
“slicing” the mesh along the upper and lower 
bounds of the Cartesian (XYZ) axes with a certain 
threshold value and finding the number of points 
present at the two ends. For instance, if we are 
observing a conical object with a centerline along 
the Z-axis, we expect that the lower end (with the 
circular cross-section) will have many more points 
than the upper end, which is just the tip of the 
cone. To ensure considerably accurate information 
about slices, in the case of tips and points, we 
continue to raise the threshold as needed until at 
least 10 points are found in each mesh slice. 
        Features 10 through 13 are quantitative 
descriptors for the cross-sectional shapes of an 
object. A 2D projection of the object is created 
such that all the points are “squashed” down to a 
single plane. We then iterate through different 
sizes of circles and rectangles (respective to the 
feature) and find the RMS error of the best 
geometric fit to these projections. In order to 
ensure that this feature takes a value between 0 
and 1, we have placed the RMS error value 
through a logistic regression sigmoid function 
with a design parameter c as follows. This 
parameter is chosen depending on the desired 
sharpness of the logistical classifier. 
 

 
 
        Feature 14 is the most elaborate feature we 
designed for this project. In fact, we developed 
two different strategies for detecting handle-
related asymmetry in objects. The first one is a 2D 
projection, Hough Transform-based feature which 
creates best-fit boundaries of an object’s main 
body and typically does a good job in isolating 
handles outside of this boundary. The second 
technique, which is the one we decided to employ, 
is a rotation-based cylinder fitting algorithm using 
the 3D model’s convex hull. Both of these 
algorithms double as handle classifying features 
and Mug-type object gripping point/approach 
vector computation functions and will be 
discussed in the gripping point computation 
section that follows. 
B.  Object Alignment 



        We initially assumed that we could use as 
input any object regardless of its alignment in 3D 
Cartesian space. We developed two possible 
alignment techniques, both of which we decided 
to discontinue because of their shortcomings in 
dealing with asymmetric objects like mugs, and 
because the .ply objects we use are already 
aligned with the X, Y and Z axes. 
        The first alignment technique we employed 
was a custom iterative cost function algorithm 
which iterates through different rotation angles 
about the X, Y and Z axes in order to maximize 
the length of a major axis and minimize the length 
of a minor axis. For example, we rotate about the 
Z axis until we maximize the X-dimension and 
minimize the Y-dimension based on the following 
cost function. 
 
 
 
 

where:     is the mean x-coordinate 
                is the mean y-coordinate. 

 
        The second alignment technique we tried 
used the built-in MATLAB functions 
princomp.m and convhulln.m. We compute the 
convex hull of an object and then rotate it using 
Principal Component Analysis (PCA). This 
ensures that our major axis is the X-axis and our 
minor axis is the Z-axis. These functions in 
conjunction worked very well for symmetric 
objects, but not for irregular shapes so we could 
not rely on them when computing the object 
vectors. 
 
C.  Support Vector Machine 
        To perform the classification of objects we 
used SVMLight [1].  The objects were divided 
into three basic classes:  
 

        Class 1: Glass, bottles, juice boxes, etc. 
        Class 2: Plates and bowls. 
         Class 3: Objects with handles such as mugs             

and pitchers.   
 

        We assigned a class to each object and three 
SVMs were developed for classification of a new 
object.  Given any new point cloud, we create the 
associated attribute vector and feed it into the 

classification tool in SVMLight for each of the 
three class identifiers.  Each SVM determines if 
an object does or does not belong in a single class. 
For classification and testing, the .ply data is split 
into training and testing sets.  Three-quarters of 
the data was put in the training set, while the other 
quarter into a testing set.  The same data was put 
into each set for each of the three classifiers; 
however, when fed into svm_learn, the 
classification labels were reassigned to suit the 
appropriate class.  
        Given the set of three trained SVMs and the 
testing data, final classification was then done as 
follows: 
 
1) If there is only one positive classification, 

then assign the new object that class, and 
proceed to compute the gripping point. 

2) If there is more than one positive 
classification, then we assign the class of the 
object to be that which is "most positive".  
Specifically, the class of this object will be 
the one where the object lies deepest in the 
positive classification region. 

3) If there are no positive classifications, then 
assign the class of the object to be that which 
is "least negative".  Specifically, we have all 
three classifiers saying the object does not 
belong, so we assign it the class where it is 
closest to the SVM division. 
 
        For many objects that are misclassified, 
an acceptable grasping point can still be 
calculated.  For example, while you would 
like to grasp a mug on the handle, if classified 
as a cup, the grasping point would be 
computed at the centroid, as discussed in 
Grasping Point Computation.  Additionally, a 
cup or mug, if misclassified as a plate or 
bowl, could be picked up on the brim.  While 
not optimal, these grasping points can still 
allow for the object to be picked up; however, 
the grasping points are either awkward or 
simply unintuitive, so the result can be 
considered a failure.  We will discuss the 
results of the SVM classifications paired with 
the gripping point strategies in SVM Results. 
  

 
 

                 
 



D.  Grasping Point Computation 
        As previously discussed, we designed a 
different manipulation strategy for each of the 
object classes we have defined. For the 
Glass/Bottle category, the gripping strategy is 
very simple since these objects are symmetric and 
have centroids easily approachable by an end 
effector. For the Plate/Bowl category, the gripping 
algorithm is non-trivial since the approach 
direction to the rim of a plate can vary with 
different types of objects. The most complicated 
gripping strategy was used to approach handles in 
the Mug/Pitcher category. Again, we attempted 
two different strategies and chose the one with the 
better overall performance.     
  
Glass/Bottle Category: 
         The gripping point for this object class is 
simply the “center of mass” of the object. This is 
easily computed by averaging the X, Y and Z 
coordinates of all the points in the object. The 
gripper approach direction is parallel to the X-Y 
plane, but its direction within that plane is not 
important since the cross-section of these objects 
is symmetric. Therefore, we define the approach 
angle arbitrarily as the (normalized) difference 
between a point (60, 60) on the X-Y plane at the 
centroid height and the actual center point of the 
object. 
 
Plate/Bowl Category: 
        For plates and bowls, we have already 
discussed that our optimal gripping strategy is not 
to reach the centroid of the object as this would be 
difficult due to the flatness of a plate or the 
curvature of a bowl resulting in a centroid that is 
not even on the object itself. This strategy 
assumed that any bowl or plate we consider is 
wider than its height, so we set the Z axis as the 
minor axis prior to gripping point computation. 
We then divide the 3D model into six (6) buckets 
spaced evenly in Z-coordinate value. We then find 
the maximum X-coordinate of all points in each 
bucket. The gripper approach direction is the 
vector defined between the maximum X-
coordinate maximum and the minimum X-
coordinate maximum. The gripping point itself is 
the point of maximum X-coordinate of the whole 

object. The schematic below visually represents 
this algorithm. 
 

 
Fig. 2: Plate/Bowl Grasping Strategy Schematic. 

 
Mug/Pitcher Category: 
        The first strategy we tried for handle 
grasping built on the Hough Transform algorithm. 
The idea behind this is that due to the higher point 
concentration on 2D projections of edges, we can 
use lines that pass through the most number of 
points to accurately represent edges. In the case of 
a mug, we could then separate the handle from the 
main body through these Hough Transform 
generated lines. The boundary line is generated by 
iterating through different values of R and  as 
shown in the schematic below. The origin of this 
line is simply the center of mass of the entire Mug 
object. 
 

    
Fig. 3: Hough Transform Mug Grasping Strategy. 

 
        To find the grasping point with the algorithm 
above, we take the average of all the points 
outside the boundary (in the ideal case, this would 
be just the handle). The approach vector then 
passes through the grasping point and is 
perpendicular to the Hough Transform boundary 
line. Note that the line picture above is ideal, and 
while it looks like this for some objects, it does 



not fully isolate handles all the time. This 
algorithm deals with handle rotation too, since it 
uses the handle symmetry descriptor to figure out 
which 2D projections (X-Z, Y-Z or both) should 
be used. Symmetry is defined with the ratio of 
points outside the Hough Transform boundary 
versus the total number of points. If symmetry is 
“low” in only one of the 2D projections, we use 
only the boundary for that projection. If symmetry 
is “low” for both X-Z and Y-Z projections, we 
look at points to the left of both boundaries, and 
the approach vector is a linear combination of the 
perpendiculars to both boundaries. 
        The second strategy we used to find the mug 
grasping point does not show any increased 
performance in directly computing the grasping 
point, but the algorithm runs significantly faster 
than the first one. Here, we rotate the top (X-Y) 
view of the mug until it is as symmetric as 
possible about the Y-axis – i.e. the handle points 
directly upwards or downwards in this projection. 
We then find a circle centered about the Y-axis 
which best fits the X-coordinates of all the points. 
This circle is then moved up and down along the 
Y-axis until the RMS error of the circle fit is 
further minimized. The center of the circle is kept 
track of and the entire structure is rotated back to 
original coordinates. 
 

 
Fig. 4: Cylinder Fit Mug Grasping Strategy. 

a) Plan View (left)   b) Lateral Elevation (right) 
 
        To account for slight error in cylinder fitting 
due to the eccentricity induced by the handle, we 
define an additional threshold “shell” of points 
outside the cylinder which we still consider to be 
internal to the main body and not the handle. The 
gripping point is computed as the average of all 
the points outside this shell, and the gripping 
approach vector is defined from the gripping point 

towards the center of the best fit cylinder. The 
symmetry feature here is defined as follows, again 
with a design parameter c involved. We made c 
large enough for our purposes so that the feature 
is close to a binary value for good SVM 
classification performance. 
 

 
 

 
 
E.  Code Structure 
        While our algorithm was initially developed 
in MATLAB, the final product is a C++ class 
(Classify.h) which makes calls to both Octave 
functions and the SVM executable files. This 
allows for easy integration with any ROS 
controller wanting to perform object classification 
or grasping point computations. 
        To use the Classify.cpp and Classify.h files 
in a ROS controller, we must first include all the 
SVM and Octave files. The svm_light folder 
contains the SVM model text files created from 
our learning data set, as well as the svm_learn 
executable. All the Octave .m functions will 
simply be placed into the source directory of the 
controller.   
        At this point, any ROS controller only needs 
to work with our Classify class. A typical object 
classification would proceed as follows: The 
controller wants to compute a gripping strategy 
for an unknown object. It creates a new instance 
of Classify, where our Constructor will initialize 
the connection to Octave. The controller supplies 
the point cloud by calling setPointCloud(). In the 
setPointCloud function, we call the getVector.m 
function and write the output feature vector to file. 
The svm_classify executable is then run for each 
SVM model file; we have one SVM model file for 
each object class – mugs, plates, and cylinders. 
The svm_classify executable writes the SVM 
margin of the point cloud to three different text 
files. The getObjectClass() function reads these 
text files and returns the object class with the 
largest positive margin. Depending on the object 
classification, the functions getGrippingPoint()  



 
 
 
and getGrippingVector() call an Octave function 
(findMugGraspingPoint.m, findPlateGraspingPoint.m, 
or findCylinderGraspingPoint.m) to return the 
resulting grasping point and vector, respectively.  
 

III. RESULTS 
 
A.  Grasping Point Results 

 
Fig. 6: SVM Non-optimal gripping point 

calculations on misclassified objects. a) An 
acceptable alternative grasping point (above)  b) An 

invalid grasping point (below) 

 
        Fig. 5 above shows some gripping strategies 
for objects in our test set. Our category-dependent 
grasping algorithms performed very well, as all 
correctly classified objects displayed feasible 
gripper positions and approach directions in the 
MATLAB visualization. We cannot quantitatively 
assess how good these gripping strategies are, but 
all our 3D plots displayed viable solutions to the 
manipulation problem. The SVM classification  

 
 
 
performance was the bigger issue, as the gripping 
points and vectors calculated for misclassified 
objects do not give good results (as we will later 
see). 
        One object which is misclassified is a 
chemical bottle, shown in Fig. 6a.  There are no 
objects in the training set that resemble this exact 
shape, although the classification clearly should 
put it in the same class as any bottle or glass with 
no handle.  Incidentally, the resulting 
classification is that of class 1: mugs and objects 
with handles.  Fortunately, while this is 
considered a failure in that our algorithm was 
unable to perfectly identify the object type and 
compute an optimal grasping point, the grasping 
point computed via the handle grasping methods 
returns a non-optimal point which would also be 
valid.  
        Another object that is misclassified as a mug 
is the box shown in Fig. 6b. Note that because our 
code tries to look for a “handle” in the box, the 
gripping point is close to the edge of the box and a 
real grasper would probably slip if attempting to 
manipulate the box in this fashion. Additionally, 
the approach vector is not perpendicular to the 
object’s minor axis. 
 
B.  SVM Results   
        A major obstacle in this project is the lack of 
“real” .ply object data.  As a result of this, the 
SVM kernel used could not be overly 
sophisticated, as it would over fit to the training 
data and cause large testing errors.  Over fitting 
the training data is not an issue for a linear or 
quadratic kernel. 
        When tuning constants and choosing an 
appropriate kernel, we examined five critical 
values.  The training and testing errors are always 
important, but more importantly we watched the 
change in precision, recall, and F-Values for a 
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         Fig. 5: Sample gripping strategies for various objects in the test set. 



given SVM training setup. Precision is the ratio of 
true positives classified positive by the SVM 
versus the total number of examples classified 
positive, while recall is the number of true 
positives classified positive by the SVM versus 
the total number of positive examples in the data 
set. In our case, we strive to correctly classify all 
positive examples, since we don’t want any 
objects to be rejected by all three SVM classifiers.  
This means that we weight a higher recall slightly 
more than precision when attempting to tune the 
SVM classifiers to optimize the grasper.  Figure 6 
shows the results of testing a linear and quadratic 
SVM classifier on the training and testing sets. 
        Proceeding with the three SVM model files 
output by SVMLight using the quadratic kernel, 
we compute the classification for an unknown 
object, and subsequently the grasping point.  For 
our test set of size 35, 4 objects were incorrectly 
classified, for an 11.4% overall testing error on 
grasping point calculations.  Most importantly, the 
objects which were misclassified using this 
method were objects which were under 
represented in the training set. Commonly found 
objects such as plates, bowls, cups, and wine 
glasses were all correctly classified by the three 
SVM classifiers. 
 

 

 
Table 2: SVM Testing results. a) biased linear 

kernel (above)  b) biased quadratic kernel (below) 

 
 
 

 
C.  Data Quantity and Format 
        While our training and testing results were 
fairly good, the lack of available 3D model data at 
our disposal had a great effect on the results and 
depth of our work. We were limited to only 133 
models from the .ply object database [2], and then 
had to divide these into training and testing data. 
We remedied this limited availability of .ply 
models by cutting down the number of object 
categories to three very distinct classes. 
        In addition, we decided not to utilize the 
original .3DS models we were working with 
because the data point structure is much less 
“real” than the .ply formatted objects. The 
concentration of points is not as uniform for .3DS 
objects like it is for .ply objects, and the general 
3D point distribution is very sparse, especially for 
simple objects. While the .ply objects are formed 
from real data, the points on .3DS objects are 
structured to just define the vertices of the model. 
Therefore, for features such as straight handles, a 
typical .3DS point distribution would be virtually 
empty everywhere except the edges of the handle. 
Therefore, our point density-based features 
showed little success with the .3DS object format. 
 
 

D.  Object Alignment 
        Another initial element of this project which 
we decided to discontinue for the final product 
was the notion of object alignment. The alignment 
techniques described earlier did not yield good 
results, particularly for asymmetric objects. 
Again, we encountered an advantage in using the 
.ply data format database because all objects were 
already satisfactorily aligned with the Cartesian 
axes. The .3DS objects were not, and even though 
we could align simple objects like boxes and pens, 
objects like cups and ladles could not be rotated to 
align with any of the major co-ordinate axes. If 
our work focused more on grasping of misaligned 
simple objects we would surely employ PCA 
alignment techniques. 
 
 
 
 
 

 
Class 1 Class 2 Class 3 

Training Error 11.22% 2.04% 10.20% 
Testing Error 14.29% 0.00% 14.29% 
Test Precision 63.64% 100.00% 93.75% 

Test Recall 87.50% 100.00% 78.95% 
F1 Value 73.69% 100.00% 85.72% 

 
Class 1 Class 2 Class 3 

Training Error 6.12% 0.00% 8.16% 
Testing Error 11.43% 0.00% 8.57% 
Test Precision 70.00% 100.00% 94.44% 

Test Recall 87.50% 100.00% 89.47% 
F1 Value 77.78% 100.00% 91.89% 



 
 

 
 

Fig. 7: a) Effectively Aligned .3DS Object (top) 
     b) Misaligned .3DS Object (bottom) 

 
 

IV. CONCLUSION 
 

        We developed a feature-based classifier for 
3D point cloud models using Support Vector 
Machine techniques. The features were designed 
judiciously to create a 14-element vector that can 
quantitatively separate different object categories 
based on mathematical expressions for their 
unique characteristics. By training the SVM with 
a set of 3D models we can then introduce novel 
objects and classify them in a category that most 
accurately describes them. Then, based on the 
classification of this new object we can apply 
class-specific gripping strategies which can serve 
as a guideline for a real robotic manipulator 
device. 
        For future work, we plan on finding more 
.ply formatted 3D models so that we can expand 
our data set. This well-needed expansion will 
improve our SVM results and also allow us to 
introduce more object classes to describe objects. 
Other plans involve using the C++ class we have 
written and testing our gripping strategies on an 
actual robotic platform by interfacing with Robot 
Operating System (ROS) through the roscpp 
package. Another idea we had for further 
implementation was the use of apprenticeship or 
reinforcement learning instead of hard-coded 
gripping strategies. However, this would require 
the use of a robot or simulator in order to be able 
to evaluate gripping performance. 
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