

Abstract:
 There are many challenges present in the
field of robotic manipulation. When
manipulating an object using a gripper, there is
more to consider than simply finding the
location of the object and moving the robotic
arm towards that point. We have developed a
descriptive feature based machine learning
platform that views a 3D point cloud and
classifies it as one of three different object
types: Mugs, Plates/Bowls and Glasses/Bottles.
In this project, we use a database of classified
3D mesh objects as a Support Vector Machine
(SVM) training set for new objects to be
classified. Based on this classification we then
apply different gripping strategies that best
suit the type of object to be manipulated. This
point and vector then serves as a reference
command for a real or simulated manipulation
platform.

I. PROJECT OVERVIEW

 Our motivation for this work stems from
discussion about ways to manipulate different
kind of objects. When we consider an object with
a handle, such as a mug or coffee cup, we can
pick it up in several ways. The mug can be picked
up by its center of gravity, by grasping its upper
rim or by grasping the handle. Intuitively, because
the object has a handle, we can conclude that the
handle would probably be the best gripping
strategy for a mug-type object. For something like
a plate or bowl, however, there is no handle
present to repeat this same strategy. In this case,
grabbing the edge of the plate would be the best
procedure. Similarly, for an object resembling a
bottle, we can picture our optimal gripping
strategy as grasping the middle of the object by its
minor axis. While we can instruct a computer to
follow these rules, we must first figure out what
type of object a set of 3D points really represents.

Fig. 1: Computed Gripping Point for a Mug.

 In order to classify objects in one of the three
predetermined categories we must develop a set of
features that can best explain the qualitative
differences between objects. We use ratios
between dimensions in X, Y and Z directions to
roughly determine the general shape of an object.
To find handles, as in the case of a mug, we use
an iterative circle-fitting algorithm which gives us
a notion of symmetry between opposing sides of
an object. We also look at the boundaries of 2D
projections of the point clouds to find the relative
sizes of objects’ opposing ends.
 With these features, we generate a vector that
describes any given 3D object. Using machine
learning techniques, namely Support Vector
Machines, we can then classify models based on
their feature vectors. For every object class we
define, we have a separate SVM that classifies an
object as positive or negative – positive meaning
that the object is a candidate for that particular
class. We then evaluate which class our object
most closely matches. Based on this label, we then
compute the gripping point and gripper approach
vector specific to objects of that class.
 We have written a C++ class that can
interface with Robot Operating System (ROS),
namely with the Willow Garage PR2 Robotic
simulator. This class employs a GNU Octave-
based package that we wrote on top of existing
MATLAB packages to read and manipulate 3D
mesh objects. All the SVM building, pre-

3D OBJECT CLASSIFICATION AND GRIPPING POINT LEARNING
CS / ECE / MAE 4758 – ROBOT LEARNING

Sebastian Castro [sac77] Nathan Lloyd [nsl6] Rui Wu [rrw32]

processing, and image displaying is done directly
in MATLAB. The ROS-compatible section of our
project takes in a 3D matrix of points or model
filename (in .ply format) and classifies an object
based on three SVM models. The final output is a
gripping point and vector for the gripper to
approach the object.

II. APPROACH

A. Features
 We iterated through several possible
numerical features that we could use to pinpoint a
3D model to a specific class. Our final result used
the feature list as shown in Table 1. These features
constitute a 14-dimensional vector that
characterizes a particular object and is then used
for SVM training and classification. We have
assigned equal weight to these features by
constraining each of them to take a value between
0 and 1.

Feature Description

1 Minor Axis Length/Major Axis Length

2 Middle Axis Length/Major Axis Length

3 Minor Axis Length/Middle Axis Length

4-9
Ratio of number of points on lower

and upper ends of X, Y and Z axes.

10-11 Circle fit to 2D projected ends.

12-13 Rectangle fit to 2D projected ends.

14 Handle detection feature.
Table 1: Current Classification Attribute List.

 The first 3 attributes simply give us the
general “envelope” shape of the object. For the
object classes that we are considering, and
extending to even further possible work, it is
important to know how “long and thin” or “short
and wide” an object can be described as. In the
case of a bottle of perfectly circular cross-section,
for example, we will find that the first 2 features
will be small and close to equal, and feature 3 will
be close to 1 because the middle and minor axes
lengths describe the circular cross-section. For a
spherical object, on the other hand, we expect that
all 3 features will take a value close to 1.

 Features 4-9 can quantitatively describe the
degree of “taper” of a 3D object. This is done by
“slicing” the mesh along the upper and lower
bounds of the Cartesian (XYZ) axes with a certain
threshold value and finding the number of points
present at the two ends. For instance, if we are
observing a conical object with a centerline along
the Z-axis, we expect that the lower end (with the
circular cross-section) will have many more points
than the upper end, which is just the tip of the
cone. To ensure considerably accurate information
about slices, in the case of tips and points, we
continue to raise the threshold as needed until at
least 10 points are found in each mesh slice.
 Features 10 through 13 are quantitative
descriptors for the cross-sectional shapes of an
object. A 2D projection of the object is created
such that all the points are “squashed” down to a
single plane. We then iterate through different
sizes of circles and rectangles (respective to the
feature) and find the RMS error of the best
geometric fit to these projections. In order to
ensure that this feature takes a value between 0
and 1, we have placed the RMS error value
through a logistic regression sigmoid function
with a design parameter c as follows. This
parameter is chosen depending on the desired
sharpness of the logistical classifier.

 Feature 14 is the most elaborate feature we
designed for this project. In fact, we developed
two different strategies for detecting handle-
related asymmetry in objects. The first one is a 2D
projection, Hough Transform-based feature which
creates best-fit boundaries of an object’s main
body and typically does a good job in isolating
handles outside of this boundary. The second
technique, which is the one we decided to employ,
is a rotation-based cylinder fitting algorithm using
the 3D model’s convex hull. Both of these
algorithms double as handle classifying features
and Mug-type object gripping point/approach
vector computation functions and will be
discussed in the gripping point computation
section that follows.
B. Object Alignment

 We initially assumed that we could use as
input any object regardless of its alignment in 3D
Cartesian space. We developed two possible
alignment techniques, both of which we decided
to discontinue because of their shortcomings in
dealing with asymmetric objects like mugs, and
because the .ply objects we use are already
aligned with the X, Y and Z axes.
 The first alignment technique we employed
was a custom iterative cost function algorithm
which iterates through different rotation angles
about the X, Y and Z axes in order to maximize
the length of a major axis and minimize the length
of a minor axis. For example, we rotate about the
Z axis until we maximize the X-dimension and
minimize the Y-dimension based on the following
cost function.

where: is the mean x-coordinate
 is the mean y-coordinate.

 The second alignment technique we tried
used the built-in MATLAB functions
princomp.m and convhulln.m. We compute the
convex hull of an object and then rotate it using
Principal Component Analysis (PCA). This
ensures that our major axis is the X-axis and our
minor axis is the Z-axis. These functions in
conjunction worked very well for symmetric
objects, but not for irregular shapes so we could
not rely on them when computing the object
vectors.

C. Support Vector Machine
 To perform the classification of objects we
used SVMLight [1]. The objects were divided
into three basic classes:

 Class 1: Glass, bottles, juice boxes, etc.
 Class 2: Plates and bowls.
 Class 3: Objects with handles such as mugs

and pitchers.

 We assigned a class to each object and three
SVMs were developed for classification of a new
object. Given any new point cloud, we create the
associated attribute vector and feed it into the

classification tool in SVMLight for each of the
three class identifiers. Each SVM determines if
an object does or does not belong in a single class.
For classification and testing, the .ply data is split
into training and testing sets. Three-quarters of
the data was put in the training set, while the other
quarter into a testing set. The same data was put
into each set for each of the three classifiers;
however, when fed into svm_learn, the
classification labels were reassigned to suit the
appropriate class.
 Given the set of three trained SVMs and the
testing data, final classification was then done as
follows:

1) If there is only one positive classification,

then assign the new object that class, and
proceed to compute the gripping point.

2) If there is more than one positive
classification, then we assign the class of the
object to be that which is "most positive".
Specifically, the class of this object will be
the one where the object lies deepest in the
positive classification region.

3) If there are no positive classifications, then
assign the class of the object to be that which
is "least negative". Specifically, we have all
three classifiers saying the object does not
belong, so we assign it the class where it is
closest to the SVM division.

 For many objects that are misclassified,
an acceptable grasping point can still be
calculated. For example, while you would
like to grasp a mug on the handle, if classified
as a cup, the grasping point would be
computed at the centroid, as discussed in
Grasping Point Computation. Additionally, a
cup or mug, if misclassified as a plate or
bowl, could be picked up on the brim. While
not optimal, these grasping points can still
allow for the object to be picked up; however,
the grasping points are either awkward or
simply unintuitive, so the result can be
considered a failure. We will discuss the
results of the SVM classifications paired with
the gripping point strategies in SVM Results.

D. Grasping Point Computation
 As previously discussed, we designed a
different manipulation strategy for each of the
object classes we have defined. For the
Glass/Bottle category, the gripping strategy is
very simple since these objects are symmetric and
have centroids easily approachable by an end
effector. For the Plate/Bowl category, the gripping
algorithm is non-trivial since the approach
direction to the rim of a plate can vary with
different types of objects. The most complicated
gripping strategy was used to approach handles in
the Mug/Pitcher category. Again, we attempted
two different strategies and chose the one with the
better overall performance.

Glass/Bottle Category:
 The gripping point for this object class is
simply the “center of mass” of the object. This is
easily computed by averaging the X, Y and Z
coordinates of all the points in the object. The
gripper approach direction is parallel to the X-Y
plane, but its direction within that plane is not
important since the cross-section of these objects
is symmetric. Therefore, we define the approach
angle arbitrarily as the (normalized) difference
between a point (60, 60) on the X-Y plane at the
centroid height and the actual center point of the
object.

Plate/Bowl Category:
 For plates and bowls, we have already
discussed that our optimal gripping strategy is not
to reach the centroid of the object as this would be
difficult due to the flatness of a plate or the
curvature of a bowl resulting in a centroid that is
not even on the object itself. This strategy
assumed that any bowl or plate we consider is
wider than its height, so we set the Z axis as the
minor axis prior to gripping point computation.
We then divide the 3D model into six (6) buckets
spaced evenly in Z-coordinate value. We then find
the maximum X-coordinate of all points in each
bucket. The gripper approach direction is the
vector defined between the maximum X-
coordinate maximum and the minimum X-
coordinate maximum. The gripping point itself is
the point of maximum X-coordinate of the whole

object. The schematic below visually represents
this algorithm.

Fig. 2: Plate/Bowl Grasping Strategy Schematic.

Mug/Pitcher Category:
 The first strategy we tried for handle
grasping built on the Hough Transform algorithm.
The idea behind this is that due to the higher point
concentration on 2D projections of edges, we can
use lines that pass through the most number of
points to accurately represent edges. In the case of
a mug, we could then separate the handle from the
main body through these Hough Transform
generated lines. The boundary line is generated by
iterating through different values of R and as
shown in the schematic below. The origin of this
line is simply the center of mass of the entire Mug
object.

Fig. 3: Hough Transform Mug Grasping Strategy.

 To find the grasping point with the algorithm
above, we take the average of all the points
outside the boundary (in the ideal case, this would
be just the handle). The approach vector then
passes through the grasping point and is
perpendicular to the Hough Transform boundary
line. Note that the line picture above is ideal, and
while it looks like this for some objects, it does

not fully isolate handles all the time. This
algorithm deals with handle rotation too, since it
uses the handle symmetry descriptor to figure out
which 2D projections (X-Z, Y-Z or both) should
be used. Symmetry is defined with the ratio of
points outside the Hough Transform boundary
versus the total number of points. If symmetry is
“low” in only one of the 2D projections, we use
only the boundary for that projection. If symmetry
is “low” for both X-Z and Y-Z projections, we
look at points to the left of both boundaries, and
the approach vector is a linear combination of the
perpendiculars to both boundaries.
 The second strategy we used to find the mug
grasping point does not show any increased
performance in directly computing the grasping
point, but the algorithm runs significantly faster
than the first one. Here, we rotate the top (X-Y)
view of the mug until it is as symmetric as
possible about the Y-axis – i.e. the handle points
directly upwards or downwards in this projection.
We then find a circle centered about the Y-axis
which best fits the X-coordinates of all the points.
This circle is then moved up and down along the
Y-axis until the RMS error of the circle fit is
further minimized. The center of the circle is kept
track of and the entire structure is rotated back to
original coordinates.

Fig. 4: Cylinder Fit Mug Grasping Strategy.

a) Plan View (left) b) Lateral Elevation (right)

 To account for slight error in cylinder fitting
due to the eccentricity induced by the handle, we
define an additional threshold “shell” of points
outside the cylinder which we still consider to be
internal to the main body and not the handle. The
gripping point is computed as the average of all
the points outside this shell, and the gripping
approach vector is defined from the gripping point

towards the center of the best fit cylinder. The
symmetry feature here is defined as follows, again
with a design parameter c involved. We made c
large enough for our purposes so that the feature
is close to a binary value for good SVM
classification performance.

E. Code Structure
 While our algorithm was initially developed
in MATLAB, the final product is a C++ class
(Classify.h) which makes calls to both Octave
functions and the SVM executable files. This
allows for easy integration with any ROS
controller wanting to perform object classification
or grasping point computations.
 To use the Classify.cpp and Classify.h files
in a ROS controller, we must first include all the
SVM and Octave files. The svm_light folder
contains the SVM model text files created from
our learning data set, as well as the svm_learn
executable. All the Octave .m functions will
simply be placed into the source directory of the
controller.
 At this point, any ROS controller only needs
to work with our Classify class. A typical object
classification would proceed as follows: The
controller wants to compute a gripping strategy
for an unknown object. It creates a new instance
of Classify, where our Constructor will initialize
the connection to Octave. The controller supplies
the point cloud by calling setPointCloud(). In the
setPointCloud function, we call the getVector.m
function and write the output feature vector to file.
The svm_classify executable is then run for each
SVM model file; we have one SVM model file for
each object class – mugs, plates, and cylinders.
The svm_classify executable writes the SVM
margin of the point cloud to three different text
files. The getObjectClass() function reads these
text files and returns the object class with the
largest positive margin. Depending on the object
classification, the functions getGrippingPoint()

and getGrippingVector() call an Octave function
(findMugGraspingPoint.m, findPlateGraspingPoint.m,
or findCylinderGraspingPoint.m) to return the
resulting grasping point and vector, respectively.

III. RESULTS

A. Grasping Point Results

Fig. 6: SVM Non-optimal gripping point

calculations on misclassified objects. a) An
acceptable alternative grasping point (above) b) An

invalid grasping point (below)

 Fig. 5 above shows some gripping strategies
for objects in our test set. Our category-dependent
grasping algorithms performed very well, as all
correctly classified objects displayed feasible
gripper positions and approach directions in the
MATLAB visualization. We cannot quantitatively
assess how good these gripping strategies are, but
all our 3D plots displayed viable solutions to the
manipulation problem. The SVM classification

performance was the bigger issue, as the gripping
points and vectors calculated for misclassified
objects do not give good results (as we will later
see).
 One object which is misclassified is a
chemical bottle, shown in Fig. 6a. There are no
objects in the training set that resemble this exact
shape, although the classification clearly should
put it in the same class as any bottle or glass with
no handle. Incidentally, the resulting
classification is that of class 1: mugs and objects
with handles. Fortunately, while this is
considered a failure in that our algorithm was
unable to perfectly identify the object type and
compute an optimal grasping point, the grasping
point computed via the handle grasping methods
returns a non-optimal point which would also be
valid.
 Another object that is misclassified as a mug
is the box shown in Fig. 6b. Note that because our
code tries to look for a “handle” in the box, the
gripping point is close to the edge of the box and a
real grasper would probably slip if attempting to
manipulate the box in this fashion. Additionally,
the approach vector is not perpendicular to the
object’s minor axis.

B. SVM Results
 A major obstacle in this project is the lack of
“real” .ply object data. As a result of this, the
SVM kernel used could not be overly
sophisticated, as it would over fit to the training
data and cause large testing errors. Over fitting
the training data is not an issue for a linear or
quadratic kernel.
 When tuning constants and choosing an
appropriate kernel, we examined five critical
values. The training and testing errors are always
important, but more importantly we watched the
change in precision, recall, and F-Values for a

-100

0

100 -300 -200 -100 0 100

0

50

100

150

200

250

-40

-20

0

20

40 -100

-50

0

50

0

20

40

60

80

 Fig. 5: Sample gripping strategies for various objects in the test set.

given SVM training setup. Precision is the ratio of
true positives classified positive by the SVM
versus the total number of examples classified
positive, while recall is the number of true
positives classified positive by the SVM versus
the total number of positive examples in the data
set. In our case, we strive to correctly classify all
positive examples, since we don’t want any
objects to be rejected by all three SVM classifiers.
This means that we weight a higher recall slightly
more than precision when attempting to tune the
SVM classifiers to optimize the grasper. Figure 6
shows the results of testing a linear and quadratic
SVM classifier on the training and testing sets.
 Proceeding with the three SVM model files
output by SVMLight using the quadratic kernel,
we compute the classification for an unknown
object, and subsequently the grasping point. For
our test set of size 35, 4 objects were incorrectly
classified, for an 11.4% overall testing error on
grasping point calculations. Most importantly, the
objects which were misclassified using this
method were objects which were under
represented in the training set. Commonly found
objects such as plates, bowls, cups, and wine
glasses were all correctly classified by the three
SVM classifiers.

Table 2: SVM Testing results. a) biased linear

kernel (above) b) biased quadratic kernel (below)

C. Data Quantity and Format
 While our training and testing results were
fairly good, the lack of available 3D model data at
our disposal had a great effect on the results and
depth of our work. We were limited to only 133
models from the .ply object database [2], and then
had to divide these into training and testing data.
We remedied this limited availability of .ply
models by cutting down the number of object
categories to three very distinct classes.
 In addition, we decided not to utilize the
original .3DS models we were working with
because the data point structure is much less
“real” than the .ply formatted objects. The
concentration of points is not as uniform for .3DS
objects like it is for .ply objects, and the general
3D point distribution is very sparse, especially for
simple objects. While the .ply objects are formed
from real data, the points on .3DS objects are
structured to just define the vertices of the model.
Therefore, for features such as straight handles, a
typical .3DS point distribution would be virtually
empty everywhere except the edges of the handle.
Therefore, our point density-based features
showed little success with the .3DS object format.

D. Object Alignment
 Another initial element of this project which
we decided to discontinue for the final product
was the notion of object alignment. The alignment
techniques described earlier did not yield good
results, particularly for asymmetric objects.
Again, we encountered an advantage in using the
.ply data format database because all objects were
already satisfactorily aligned with the Cartesian
axes. The .3DS objects were not, and even though
we could align simple objects like boxes and pens,
objects like cups and ladles could not be rotated to
align with any of the major co-ordinate axes. If
our work focused more on grasping of misaligned
simple objects we would surely employ PCA
alignment techniques.

Class 1 Class 2 Class 3

Training Error 11.22% 2.04% 10.20%
Testing Error 14.29% 0.00% 14.29%
Test Precision 63.64% 100.00% 93.75%

Test Recall 87.50% 100.00% 78.95%
F1 Value 73.69% 100.00% 85.72%

Class 1 Class 2 Class 3

Training Error 6.12% 0.00% 8.16%
Testing Error 11.43% 0.00% 8.57%
Test Precision 70.00% 100.00% 94.44%

Test Recall 87.50% 100.00% 89.47%
F1 Value 77.78% 100.00% 91.89%

Fig. 7: a) Effectively Aligned .3DS Object (top)
 b) Misaligned .3DS Object (bottom)

IV. CONCLUSION

 We developed a feature-based classifier for
3D point cloud models using Support Vector
Machine techniques. The features were designed
judiciously to create a 14-element vector that can
quantitatively separate different object categories
based on mathematical expressions for their
unique characteristics. By training the SVM with
a set of 3D models we can then introduce novel
objects and classify them in a category that most
accurately describes them. Then, based on the
classification of this new object we can apply
class-specific gripping strategies which can serve
as a guideline for a real robotic manipulator
device.
 For future work, we plan on finding more
.ply formatted 3D models so that we can expand
our data set. This well-needed expansion will
improve our SVM results and also allow us to
introduce more object classes to describe objects.
Other plans involve using the C++ class we have
written and testing our gripping strategies on an
actual robotic platform by interfacing with Robot
Operating System (ROS) through the roscpp
package. Another idea we had for further
implementation was the use of apprenticeship or
reinforcement learning instead of hard-coded
gripping strategies. However, this would require
the use of a robot or simulator in order to be able
to evaluate gripping performance.

V. ACKNOWLEDGEMENTS

 We would like to thank Joachims Thorsten
[1] for making available his SVM software
SVMLight, which we used to train and test our
feature-based object classifications. In addition,
we would like to thank Pascal Getreuer [2] and
Steven Michael [3] for their MATLAB code
packages that allowed us to easily read and
manipulate .ply and .3DS objects (respectively).
Finally, we wish to thank Professor Ashutosh
Saxena and the entire Personal Robotics group at
Cornell University for helping us develop our
work into the final product we have presented.

VI. REFERENCES

1. Joachims, T. [2008]. SVMlight – Support

Vector Machine.
<http://svmlight.joachims.org/>

2. Getreuer, P. [2004]. Read & Write PLY Files
– MATLAB Central.
<http://www.mathworks.com/matlabcentral/fi
leexchange/5459-read-write-ply-files>

3. Michael, S [2005]. Model3d – MATLAB
Central.
<http://www.mathworks.com/matlabcentral/fi
leexchange/7940-model3d>

4. Willow Garage Vault [2010]. PLY Object
Database.
<http://vault.willowgarage.com/wgdata1/vol1/
wgdb/>

5. Architectural Home Design, 3D Models,
Quality Textures. Online Interior Design.
<http://www.archibaseplanet.com/>

5

0

5

-1000

-2000

0

2000

http://www.mathworks.com/matlabcentral/fileexchange/5459-read-write-ply-files�
http://www.mathworks.com/matlabcentral/fileexchange/5459-read-write-ply-files�
http://www.mathworks.com/matlabcentral/fileexchange/7940-model3d�
http://www.mathworks.com/matlabcentral/fileexchange/7940-model3d�
http://vault.willowgarage.com/wgdata1/vol1/wgdb/�
http://vault.willowgarage.com/wgdata1/vol1/wgdb/�
http://www.archibaseplanet.com/�

